APPENDIX A
THE GENERALIZED WAVE EQUATION

Waves are oscillations in space and time. The most
deneral mathematical description of the spatial distribution
of a wave is a superposition of sine and cosine functions.

Y = Acosfhx) + Bsiv\(xx)

where VD, the "wavefunction, ' represents the wave amplitude
at some point in space, or in the case of the deBroglie waves
associated with particles, the amplitude to find the particle
at that point. A is the amplitude of the component cosine
wave, and B is the amplitude of the component sine wave. Kk,
the wavenumber (which = h/p ), measures how rapidly the wave
oscillates in space, i.e. how many complete oscillations per
unit distance.|

W = Acosr) + Bsin(i)
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We must add another factor to our equation to describe
the wave’s oscillation in time.

Y= e_"‘"*w’t (A-cos(KX) x (55'-v\()<x))
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where e W is a time-varying function equal to

cos(wx) + L sn(wX)

and i = U'I. w (omega) stands for the angular frequency,
that is how rapidly the sine and cosine functions are
changing over time.

By inserting the appropriate variables, A, B, w2, and k,
and by superposing waves with different parameters (see
section on Fourier analysis in Ch.5), we can describe any
wave.



APPENDIX B
THE SCHRODINGER EQUATION *

We would like to be able to describe the behavior of an
electron (or any other particle) mathematically. For
example, we would like to analyze the distribution and
energies of electrons around atomic nuclei, and we would like
to be able to describe the flow of electrons through
semiconductor devices.

To do so, we can combine our understanding of waves and
the quantum nature of energy and momentum. Erwin Schrodinger
and Werner Heisenberg separately discovered mathematical
descriptions of guantum behavior in 1926. We will derive the
Schrodinger equation here, as it is the most straightforward.

To begin our wave description of the electron, we borrow
from classical physics: E = p”"2/2m + V. That is, a
particle’s total energy equals its kinetic energy plus its
potential energy (symbolized by V). Into this equation we
substitute the quantum relations of energy and momentum,

E=WW=hXhw
P = h/A = A K where A = k/l'“'
Therefore

Aw = 22 + V
L

We proceed by deriving wand k"2 in terms of the
general wave equation:

v - e_-":wtiAcos(Kx) + BSW\(KX):)
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Ao = —<w ¥ so w= -,;/i*

dz}:{xz = —K*¥ so k%= d‘_t{d"z

Substituting into the energy equation,
b, () T TR () v
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Finally, multiplying both sides of the equation by ?'and
by i/1 gives

P
<h AZR': = -h% <4Zx4) + /¥
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This is the Schrodinger equation. As we will illustrate
in the next section, it allows us to calculate the amplitude
to find an electron at any point in time and space.

APPENDIX C -
QUANTIZED ENERGY STATES OF ATOMS

We will consider the case of an electron trapped in a
"potential well,” and, for purposes of illustration, we will
assume the well is infinitely deep. In a real atom, the
electron is confined to the potential well of the positively
charged nucleus, attracted by the protons, and in a real atom
the electrons can be stripped away from the nucleus. For
simplicity, too, we will only consider the one-dimensional
case: that is, we will imagine the electron is a wave
confined to a string of some lendth, L.
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By the Schrodinger equ&g,ion,zw

vy A, _ Wt /A

kG o= i (Fge) VY
But W e_"i""‘t[_/} cos(Kx) + 6$3V\(Kx)]

- a-i(%)t [_A cos(Kx) + B sin (’0‘):)
ondk “}%&;& :.“<%§é\) £ Y

So the Schrodinger equation becomes

A(CH)EY = EP = -f‘-:(d%) + VY

* aolopted From Guaford , Waves (38"47 Physics ‘°“""—)



If, as we assume, the electron is confined, we can set
VvV = 0. So

o= -2 (4%

Solving this equation for‘* will tell us the wave
distribution in the well and allow us to evaluate its energy.

To simplify the algebra, let kl = XM %&
so A*Y - _ L2
/dx‘ = k¥

This looks familiar: we have the second derivative of a
function, ¥, equal to some constant times the function
itself. An obvious solution is

Y’&) = Acos(kx) + Bsin(kx)

If the electron is oonfined,?’nwst = 0 at x = 0 (the
left end of the string) and at x = L (the right end of the
string). Therefore, ¥ can have no cosine component
(cos(0) = 1), and A must = O. ¥ then only has sine
components, and our solution reduces to

‘}’(x) = Bsiv\CKx)

This equation satisfies our condition for x = 0, since
sin(0) = 0. If ¥ = 0 at x = L, we must have that kL = nW
and, therefore, k = nW/L, where n = any inteder. This is
true because sin(nW) always = 0, since the sine function
returns to O at multiples of TW.

Q= s5mnX
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The electron wave, then, can exist only in certain
harmonic states:
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Some. elecvon, waves that may be confinel
T po‘\-tv\'h'al wad] of widih L

We can show that its energy must be quantized. Solving
for E: «
52 [AE2 Bsn(™)x
A —
= —h2 )_’_- LA
- —_— — x
2w L2
E_ “2“’.{\\1
2w L2

Since n is an integer, the electron can exist only in
certain discrete energy states: the energy is quantized.



