CHAPTER 8
TOWARD A UNIFIED THEORY

At a number of points in our discussion we’ve glimpsed
an underlying unity in physics. We find disparate concepts
are actually branches off the same tree.

Historically there have been several great unifications
in our understanding of the natural forces. Newton
demonstrated that gravity on earth, as evidenced, for
instance, in the fall of apples, behaves the same as gravity
at the scale of the solar system, as evidenced by the moon’s
orbit and the orbits of the planets. In the mid-1800’s,
Ampere, Faraday, and Maxwell showed that electricity and
magnetism are inter-related: a moving electric charge
creates a magnetic field, and a changding magnetic field
accelerates an electric charge. Einstein proved mass and
enerdy are related. He also developed a new paradigm
describing the forces in terms of geometry, and he
demonstrated the connection between space and time. More
recently, in the 1950’s and 1860’s, Steven Weinberg, Abdus
Salam, and Sheldon Glashow showed that the electromagnetic
force is related to the weak force.

Many physicists believe all four forces of nature are
related, manifestations of a single underlying Force.
They seek a "grand unified theory"” linking the strong force
to the electroweak force and, ultimately, a "“thecry of
everything,” linking all the forces of nature, including
gravity. They are encouraged because all the forces can be
described by local gauge theories.

In this chapter we ocutline recent endeavors to explain
the inter-relations between fermions and forces. Qur purpose
here is not to present the theory of everything -- it still
eludes us -- but to describe methods physicists are using to
develop such a theory. We will review evidence that the
fermions and bosons are inter-related. Then we will discuss
the concepts of symmetry, multiple dimensions, and group
theory that physicists use to explain those inter-relations.
Finally, we will consider gaugde theory, the most promising
avenue for connecting all the fermions and forces.

EVIDENCE FOR UNIFICATION AT THE SCALE QF PARTICLES

If there is, indeed, a unified description of nature, it
must manifest itself at the scale of particles. In Ch.8, we
cited evidence that the fermions are related to each other:



-- The products of processes such as neutron decay and
pion decay include leptons, where before decay there were
only quarks.
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-— The electric charge of the electron (a lepton)
exactly equals, but is opposite in sign, to the charge of the
proton (composed of quarks}.

In Ch.7 we cited evidence linking the forces:

-— At high energies (close interaction distances) all
four forces approcach each other in strength.
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-— Theory and experiment find the electromagnetic force
indistinguishable from the weak force at interaction energdies
above about 30 Gev.
Finally, there is evidence (cited in Ch.7) relating
fermions (the building blocks of matter) to bosons (the force
carriers): '

-~ particle/antiparticle pairs (fermions) annihilate
producing gamma rays (bosons).
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-- W vector bosons decay to leptons, and gluons decay
to quarks.

Such evidence does not prove all the fermions and forces
are related, but it is compelling.

QUESTIONS __ e )
- ) J o
A theory of everythingﬂmust answer the following
questions: '

What are the underlying qualities common £o the fermions
and bosons?

What distinguishes one particle (fermion or boson) from
another?

What is the mechanism by which fermions and bosons
interact?

We already described, in Ch. 6, one model linking
fermions and bosons, heterotic string. In that model, all
particles share a loop structure, and they are distinguished
by the modes of vibration on the loop. In this chapter, we
shall explore some mathematical approaches to a theory of
everything. The mathematics complement the heterotic string
model and in fact are incorporated into formal string theory.
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GEOMETRY

Much of physics, and much of the argument that follows,
is based on geometry. Perhaps there’s a psychological
prediliction, wired into the human mind, that seeks gecmetric
patterns. perhaps we’ve evolved to analyze our (primarily
visual) world in terms of lines and edges, squares and
triangles.

Certainly geometry is a powerful tool: witness the
triumph of Einstein’s geometric interpretation of gravity.
But is geometry the “"correct’” way to analyze Nature? We
don’t know.

The conceptual tools of modern physics -- symmetry,
multiple dimensions, and group theory -- are geometric.
Geometric arguments are:édmﬁelfing, because they make
predictions that have been verified experimentally, but keep

in mind that they are tentative probes into Nature’s whys and
wherefores.

SYMMETRY

The concept of symmetry is a cornerstone of modern
physics. It explains the conservation laws, and it helps
model the fermions and their interactions.

Everyone is familiar with symmetric gecmetric figures
such as equilateral triangles, squares, and snowflakes.
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Physicists use ancther, related definition of symmetry:
a physical system is symmetric under an operation if it
remains unchanged by that operation. For example, an
equilateral triangle is unchanged if 1t 1s rotated 120
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degrees. Hence the equilateral triangle is symmetric under
the operation of a 120 degree rotation.
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As an example of symmetry in a physical system, consider P
elastic recoil of two billiard balls. The balls reccil from
each other just the same if we transport them into outer
space as they do on a billiard table here on Earth: the laws
governing the collision of billiard balls are symmetric under
the operation of translation (change in location).
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The conservation laws are, in fact, consequences of
symmetry. Demonstrating symmetry under translation, for
example, proves the law of conservation of momentumn.
Symmetry under translation in time (i.e. an experiment
produces the same results even if performed at different
times) proves conservation of enerdy, and symmetry under
rotation in space proves conservation of angular momentum.
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—-— Particle interactions are symmetric in electric
charge. That is, the final charge of a particle system is
the same as the initial charge.
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As far as is known, only the weak force vioclates
symmetry (see Ch. 7). Beta decay, for example,
preferentially produces neutrinos with left-handed spin.

In fact all weak interactions evince spin asymmetry. As we
shall see in the next chapter, this asymmetry -- ;be
exception to the rule —--may explain the“particlé/éhti— X
particle ratio and the %act that the Universe is not, after

all, perfectly homodeneocus.

 PRACTICAL APPLICATIONS S -
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Nature’s symmetry provides a powerful tocl for learning
how she operates. For example, the neutrino was discovered
on the basis of symmetry principles:

When it became possible to probe the particulars of beta

decay, physicists discovered the total momentum of the
products -- proton and electron -- was less than the

neutron’s momentum. Yor e
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Enrico Fermi hypothesized an unobserved particle which
carried the missing momentum, and he was able to predict its
properties -- charge and spin -- on the basis of symmetry.
Later, in more sophisticated particle detectors, neutrinos
were measured directly and their properties confirmed. -

-

SUPERSYMMETRY

P2

Some theoreticians have extrapolated known principles of
symmetry into a theoretical construct called "sypersymmetry.
Supersymmetry relates the fermions to the bosons: it
postulates “supersymmetric partners” for the known particles.
For example, according to supersymmetry the photon (a boson)
has a fermion partner called the photino, and quarks
(fermions) have supersymmetric boson partners called
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No supersymmetric partners have been found experimentally,
bué{bofé powerful ‘accelerators may reveal them.

SPONTANEQUS SYMMETRY-BREAKING

If the particles and forces are symmetric and
interchangeable, why does the Universe look the way it does?
A perfectly symmetric Universe would be dull, indeed -- a
pegﬁectly uniform soup. But the real Universe cbviously
includes a variety of structures: galaxies drift across vast
voids, and bright stars sparkle against black sky.

Physicists believe the very early Universe was
completely symmetric (everywhere the same, all particles and
forces interchangeable) but that the original symmetry was
"broken"’ as the Universe evolved.

Clouds medel the early Universe and demonstrate the
process of “spontaneous symmetry breaking.” They are
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symmetric accumulations of water droplets: ,th® inside of a-
cloud looks the same in all directions -- gray mist '
everywhere. Coocl the cloud, though, and the symmetry breaks:
raindrops coalesce and fall earthward, defining direction.

Magnets also demonstrate spontaneous symmetry breaking
and model the appearance of forces in the Universe. Around a
hot magnet, the magnetic field is symmetric: there is no
field because high temperature jiggles the madnet’s electrons
out of alidnment. Let the magnet cool (the electrons re-
align themselves) and the symmetry is broken: the magnetic
field re-establishes a north and a south.
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Physicists believe the early Universe (within 107-43
seconds of its oridin -- early indeed!) was perfectly
symmetric, comprising pure energy at incomprehensibly high
temperature and density. As it expanded and cooled, the
symmetry broke. The fermions precipitated ocut, and so did
the bosons governind their interactions -- Jjust as raindrops
precipitate out of a cloud and the field out of a magnet.
(We will develop this idea further in the next chapter.)

MULTIPLE DIMENSIONS

By now, the reader is familiar with the idea of 4
dimensions -- three of space and one of time. To model
the interrelations of particles and forces, physicists
postulate even higher-order geometries -- a Universe of ten
dimensions, maybe more. o

N wo l 7

Physicistqdreqaire multiple dimensions,to explain how
qualities such as charge, color, and spin can affect the
observable universe even though they cannot be observed
directly. We cannot "see" charge, for example: we observe
its effects on the spacetime trajectories of other charges.

The unobservable qualities -- charge, color, spin, etc. --
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presumably exist in dimensions that are hidden from direct
observation.
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As an analogy, we experience effects of "hidden
dimensions” when we develop a common cold. The runny nose,
sore throat, and congestion represent the visible
manifestations of hidden invaders -- viruses which are many

orders of magnitude smaller than ourselves, far tco small to
see directly.

Describing the physical Universe, physicists say hidden
dimensions are “compactified,” i.e. embedded in the
observable four dimensions of spacetime but toco small to
observe directly. Events in those hidden dimensions twist
and shake the four dimensions of spacetime, and we observe
the resulting distortions. For example, the events of beta
decay -- exchange of W particles -- are hidden from our
direct view, but we can observe the results of the weak
interaction by tracking the spacetime trajectory of the beta
particle (electron) and proton as they interact with the
electric and magnetic fields in a particle detector.
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MATHEMATICS OF MULTIPLE DIMENSIONS

Mathematicians label the hidden dimensions in their
equations with extra “"variables."” We normally locate events
in the visible Universe using four variables -- the three
space coordinates, x, ¥, and z, and one of time, t. If the
Universe harbors other "hidden” dimensions, we need more
variables to describe them. Heterotic string theory, for
example, postulates ten dimensions described by ten
variables.

It is difficult to imagine the geometry of 5 or more
dimensions, because our senses are confined to three spatial
dimensions and one of time, but the extra dimensions behave
mathematically Jjust like the four we know. For example, we
can define lendth in two dimensions on Cartesian coordinates
according to the Pythagorean theorem:
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We can measuré with a similar methodology. in—three-
dimensions: 7
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In four spatial dimensions:
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And so on in higher dimensions.
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The following hypothetical model\ssrves,to illustrate .
the physical effects of one dimension on another. -Suppose we
describe physics in terms of "spheres embedded in spheres, "
i.e. imagine at each point in spacetime there is a sphere,
too small to be observed. We can locate an .event on the
surface of any sphere with two variables, latitude and
longitude. (The surface is two dimensional. )
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Now suppose at every point on the sphere iems -y zow 1S
another compactified sphere, too small to be resolved but
comprising two more dimensions.
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And suppose, further, at each point on that second sphere is
another, smaller sphere compr131ng two mere dimensions
and so on. Fleas on fleas., If the surfaces are connected,

distortions of one dimensiofi affect’ the geometry of all
higher dimensions.
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A mensions
So, perhaps —-- and this is sheer speculation for
purposes of i1illustration -- the weak force, in dimensions 7

and 8, affects fermion flaveor and electric charge embedded in
dimensions 5 and 6, which in turn affect the cobservable
structure of 4 dimensiocnal spacetime.

That’s the essence of multiple dimensions: the
qualities we associate with fermions -- charge, spin, color,
etec. —-—- exist in hidden dimensions, and those hidden
dimensions are embedded in and connected to the geometry of
observable spacetime. Hidden dimensions -- the dimensions of
the fermions and their interactions -- wiggle and warp the
structure of spacetime, which is what we see. We glimpse the
tracks of fermions and forces across spacetime, not the
beasties themselves.

GROUP THEQRY

Given evidence that the various fermions are related to
each other and that fermions are related to b sons, we assume
they share certain underlying qualltles “Given evidence that
they inter-convert, one particle becomlng anothe; e assume
the particles can exchange those qualities ™ 7& mékhematlcal

stem called "group theory" offers a method to account for
such inter-relations. Group theory classifies things
according to their components, and it defines how different
entities (such as particles) can interconvert if they are
built from similar parts.(or wrsr oo oo nieces wdia oty )

Mathematically, a group is any system consisting of a
set, G, and an operation, +, on the elements of G such that:



1. If x and y are both elements of G, x + y is alsoc an
element of G.

2. If x, y, and z are all elements of G,
x + (y +z) =(x +y) + 2

3. There 1s an identity element, e, such that
X + e = x.

4. Each element, x, has an inverse element, -x, such
that x + (=-x) = (=x) + x = e.

Group theory is an algebra of gperatiocons. It enables us
to predict the final state of a system after an operation or
series of operations.

For example, suppose Grizelda, a music aficianado, is
trying to set up her speaker system for best listening. She
has a tweeter, T, and a woofer, W, and she always listens
from her favorite chair, C. She can place the speakers and
chair in any of three locations in her room, and she is
trying to find the optimum arrangement.
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Determined to test every possible configuration of
speakers and chair, Grizelda expects a long day of moving
furniture, but she can exploit group theory to minimize her
effort. {(To follow the discussion, cut out a paper triangle
and label the corners T, €, and W, as shown below.)

C
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b
w,
X



Grizelda can perform two kinds of operation on her
system -~ rotations, R, and inversions, I. Let us define the
possible rotations clockwise as seen from above:

Rotodiow by 120 olegrees
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Inversions are defined about the axes drawn in the
illustrations. Thus

\ T
)1_;.. e iy AN

N

Il Thvevsiom T.1 Fvanstorms
CLp. wahal cov\;isum%{ov\ + s
Coh;infA*RW\
N\ £

Of course, Grizelda may perform a series of operations.
We will call the starting configuration the "initial state,”
and the final configuration the "“final state.” For example




Notice that the states are defined in the frame of
reference of the room. In general, there must be some
outside frame of reference in which to define a state.

This

becomes an important consideration when, later, we define

particle states such as phase and isospin.

After hefting furniture around the rocom in a numbe
trials, Grizelda finds a pattern to her work: a single
operation can produce the same final state as a series
operations. For example,
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The operatiom R(120} followed by I(1l) produces the same final

state as operation I(2) alonre.

With this discovery, Grizelda realizes she can save lots

of effort. Instead of trying every possible series of
operations, she devises the following table:

Secomcl. ogeration

R340l Rizo lkzqo ! z2ix3
R3to ||R36c{Rizo |20 |x1 |22 |23
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Grizelda has discovered an algebra of gperations.
Whereas the aldebra of our high school days involves
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numerical quantities, such as 4x + 3y = 10, the algebra of
group theory analyzes operations.

GROUP THEQRY AND THE FORCES

So how does Grizelda’s sterec system relate to fermicns
and forces?

It turns out the electromagnetic force, the weak force,
and the strong force all can be described mathematically by
dgroup theory. Modelled according to group theory, the forces
themselves are operations, and the fermion states are
elements of a &roup. For example, in neutron decay, the
initial state includes two down quarks and one up quark. The
weak force (operation) converts one down gquark (initial
state) into an up quark (final state).
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More specifically, physicists model the electromagnetic
force as the group of operations called U(l}, which stands
for Unitary Group 1. U(l) is the group of operations that
produce any of the continuous phase transitions from O to 380
degrees (0 to 2 pi radians).

We can see the relation of the mathematical group, U(1l)
to the electromagnetic force on an electron, for example, if
we model an electron as a probablility wave. The electron
wave may change phase, just as any other wave, and remain the
same wave.
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We know the electromagnetic force changes the phase of an
electron, because it shifts the interference pattern in
electron diffraction experiments, and the amount of shift is
proportional to the strength of the field.
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, This relation of the eletromagnetic force to geometry
X (phase shift) translates nicely to the mathematical terms of
U(1l). The electromagnetic force can be represented by the
gecmetric phase shift. By convention, we will represent
phase as a pointer on a dial, like a single hand on a clock
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Notice that the operation (force) must deflect the
pointer in relation to some frame of reference -- in this
case the face of the dial.

If we compare U(1l)} with Grizelda’s stereo system, the
electromagnetic force behaves as a group of operations which
can rotate the speakers and chair arcund the rcom by any
angle between 0 and 380 degrees. The agent, in the real



world, that actually performs the electromagnetic operation
is the photon.
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Physicists model the weak force mathematically by the
group SU(2) (special unitary group 2). SU(2) describes a
geometry with three phase andles, corresponding to the three
vector bosons, W-, W+, and Z. We might imagine, in analogy
with Grizelda’s stereo system, the final state is determined
by some rotation around the room, as in U(l), mediated by the
Z particle, which is the weak analogy to the photon, a
rotation about the axis through the east and west walls of
the room, plus some rotation through the north-south axis.
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In the 1950’s and 19680’s, Steven Weinberg, Sheldon
Glashow, and Abdus Salam showed that the weak force is
related to the electromagnetic force: the weak force, with
three phase axes, is a higher dimensional representation of
the electromagnetic force, which has but one phase axis.
“"Electro-weak unification, " that is, the underlying
relationship between the two forces,becomes evident at high e
energies, about 30 GeV, with the production of the vector
bosons. Experiments such as those by Carlo Rubbia and his
group at CERN have comfirmed electroweak theory dramatically.
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Physicists describe the strong force by the group SU(3),
which includes eight independent phase angles corresponding
to the eight possible gluons. The gecometric representation
of SU(3) requires 5 extra spatial dimensions: I Won't evenm-
attempt to illustrate the possible rotations, .since the paper
limits me’to but two dimensions in the three, dimensional
world of our experience. You might, however, try to imagine
the possible rotations of Grizelda’s system in higher
dimensions.

Taken together, the combined groups U(1) X SU(2) X SU(3)
represent the "Standard Model"” of particle physics.
Experimental tests in particle accelerators support the
standard model, but it makes predictions such as the
existence of the Higgs boson (to be discussed below) which
have not yet been verified.

Most seriocusly, the Standard Model is incomplete in that
it does not incorporate the force of gravity. As we shall
discuss, below, finding the relation of gravity to the other
forces is a major field of inquiry.

Two final observations to complete our discussion of
group theory: notice that group theory incorporates concepts
of symmetry and of multiple dimensions. The groups are
symmetric in that each phase has an opposite, and the
operations are symmetric in that series of operations can
result in the same final state as a single operation (e.g. in
U(1l) a rotation by 120 degrees pPlus a rotation by minus 80
degrees results in the same phase as a single rotation by 60
degdrees).
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As we have seen, the groups SU(2) and SU(3) require
multiple dimensions for their description, e.g. the eight
independent phase angles of SU(3).



All these considerations of group theory are
incorporated into the larger framework called “"gauge theory, "
the current best mathematical system for understanding the
fermions and forces.

GAUGE THEORY

The Standard Model is one of the triumphs of mocdern
physics. It accomodates known particles and their
interactiogs,_gnddit‘hps predicted the existence of new
particleéxhhich“weré subsequently found. *

Mathematically, the Standard Model is a "local, non-
Abelian gauge theory." In fact, we’ve already learned the
foundations of gaude theory in our consideration of groups.
Crudely defined, gauge theory describes the particles and
forces as local measurements of state —-— local gauges. A
gaude, roughly, is a measuring device, like the dial on a
clock,)gggrthe position of the hand represents a state. A
clockx*ﬁér>example, is a gauge: it measures the state of N
time. As we discussed in the previous section, we can
imagine other, similar gauges measuring the local
electromagnetic state, the weak state, and the strond state.
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The concept, first recognized by Einstein, that-all -
physics is:localAis central to gauge theory. Relativity
theory says our measuring tools (gauges) change according to
local spacetime curvature, i.e. the lengths of meter sticks
and the rates of clocks depend on location. To cite an
example from relativity, consider two observers, one on the
banks of the Thames in London and the other atop the World
Trade Center in New York City. The two observers experience
different gravitational fields (different spacetime
curvature): the field direction differs at the two
locations, and the gravitational potential differs, since the
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observer atop the World Trade Center is farther removed from
the Earth’s center of mass.
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The gauges in spacetime physics are meter sticks and
clocks. In our example, the gauges differ at the two
locations: the clock ticks faster atop the Trade center, and

a meter stick on the Thames is slightly longer, due to tidal
effects.
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THE GAUGE PRINCIPLE

The crux of the gauge theory of particle interactions is
the gauge principle, which says that a force is
indistinguishable from a local gauge transformation. We

return to the double slit experiment to illustrate this
concept.

When electrons traverse a double slit, the interference
pattern at the detector depends on the relative phase of the
electron waves. If we can somehow change the geometric phase
of the waves, the interference pattern changes.
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But changing the geometric phase of the waves is
indistinguishable from applyind an electromagnetic field at -
one of the slits (see p.16a). That is, the abstract ‘
mathematical manipulation of electron phase is
indistinguishable from the application of a "real” force.

The same principle applies to the weak and strong
forces: the weak force is indistinguishable from the
mathematical alteration of isospin (SU(2)) phase, and the

strong force is indistinguishable from a rotation of color
(SU(3)) phase.

Gauge theory is "non-Abelian,” that is non-commutative,
in that a series of rotations in multidimensional space may
produce a different final state if the rotations occur in a
different order. Operations on a textbook illustrate this
idea: hold the text with its cover up, as if you were about
to open it (initial state). Rotate it 30 degrees clockwise
around the axis through the front and back covers, then
rotate it around the axis running along the lines of text.
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Now perform the same two rotations, but in reverse
order.

! Fival state

ITaiha State

This final state differs from the previous final state.

The non-Abelian nature of gauge theory is especially
evident in the weak and strond interactions, where series of
rotations in phase space may produce completely different
particle states.

In the mathematical formalism of gauge theory, "forces"”
behave in such as way as to preserve the wavefunction of the
Schrodinger egquation (which describes the dynamics of a
fermion -- see Appendix), except the force changes the phase
of the wavefunction. Vice versa, changing the phase of the
wavefunction demands the application of some "force."
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Note that this mathematical formalism implies a local
symmetry: the change in phase leaves the amplitude of the
wavefunction unchanged. The totality of a wave packet like
an electron 1is unchanged even if it’s phase changes, Jjust as
an ocean wave 1s still a wave whether we hapren to be bobbing
on its crest or in the trough.
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,‘ExpPrlmental evidence for smmetry-in gauge interactions .
is—found in the Bohm-Aharonov -effect, among others. In

1963, Aharanov and Bohm showed that theiélectron wave *
responds to the vector potential, a geometric measure of the
electromadetic force in a region of spacetime, roughly X

analagous to the gravitational potential in descriptions of

the force of gravity. In the experiment, they sent electrons
through double slit aparatus past a coil encased in a metal
tube, he metal confines the magnetic field: 1i.e. there is - -4
no measurable field outside the tube. However, the vector
potential remains, and its value depends on the current

through the coil. If the experlmenter imposes a chande in

the local gauge -- Wh%éh is the vector potential -- by R
changing the currenp the electron phase gauge compensates,

as evidenced by the 'shift in the interference pattern. The A
phase shift is exactly the same as if a magnetic field was
applied at one of the slits.

Dnterterence polterm wien
no Cuvvent -ﬂaws ‘h\wuﬁ\'\ <0|\

®— I‘ %
ood oncase
w\wtmq

J}&t{ﬁevznug puﬁtfﬂ when
Cavvest 5 Tawvwed on . Prase shibt+
dua to LFFects of vedur potential .

The gauge theory of particle interactions, U(1l)} X SU(2)
X SU(3), has bqen remagkabl; successful %p is supported
spectacularly, in accelerator éxperiments.’ But where does
gravity fit into the picture? To phrase the gquestion in
terms that are more amenable to gaude theory, what is the
origin of mass, which is the "charge"” by which gravity is
measured?

GRAVITY

That it has proved difficult to reconcile gravitational
theory with the gauge theory of particles is, in fact, rather
ironic, since gravitational theory, as embodied in general
relativity, was the first of the gauge theories: as
described above, gravity can be understood in terms of local
spacetime curvature measured by meter sticks and clocks --
the gauges of spacetime.
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The problem is to reconcile the scale of stars and
planets -- the realm of deneral relativity -- with the scale
of particles. To incorporate gravity intoc a theory of
everything requires a quantum theory of gravity: how does
gravity behave at the scale of the particles?

Presumably, at the particle scale spacetime itself is
quantized: space and time are discontinuocus, and there are
guantum spaq@ime jumps from one point to the next -- as if
vou stepped out of your bathroom Tuesday morning and landed
in the park the previous Wednesday arfternoon. In the
parlance of quantum gravity aficianados, spacetime is
“foamy. "
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THE HIGGS FIELD

The most promising, but as yet unproved, gquantum theory
of gravity adduces a "Higgs field," a kind of background
gauge against which all local gauges can be compared. It is
a "self-coherent system:” that is, every local Higgds dauge
is set identical to every other. The Higgs field 1is
analogous to a superconductor, in which all the electrons
exist in the same enerdgy state.
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By this model, mass is the measure of the difference
between a local gaude and the Higgs background. But against
which gauges is the Higgs gauge to be compared? The U(1)
gauge of e/m? Or the SU(2) gauge of the weak force? Or is
there another underlying gaude which must be evoked? The
question remains open, but it is known that electric charge
contributes to the mass of the electron. Whether the U(1l)}
phase contributes agll the electron’s mass is not known.

If there is a Higgs gaude, there should be Higgs
particles. None have been identified, as yet, in accelerator
experiments, but particle physicists press the search in
earnest. One of the goals of the superconducting
supercollider is to seek Higgs particles.

IYING IT ALL TOGETHER: HETEROTIC STRINGS

At the beginning of this chapter we posed three
questions that any unified theory must address. Let’s review
those questions now, given our new tools.

How are the fermions and bosons related? We can
describe the various fermions using group theory. Each
fermion has a particular electromagnetic phase, weak phase,
and strond phase described by the groups U(1l), SU(2), and
SU(3), respectively. The groups SU(2) and SU(3) require
multiple dimensions for their evaluation.

What distinguishes one fermion from another? -7/, = - "o <07y
Differences inm U(l), SU(2), and SU(3) phase.

How do the fermions interact? According to the gauge
principle, interactions can be described in geometric terms,
as a chande in phase.

Heterotic strind theory incorporates all of the above
concepts of multiple dimensions, symmetry, group, and Jaugde:
It builds a Universe out of heterotic strings in which
individual loops are the gquanta of spacetime. Flat
spacetime, the Higgs field, is the loop itself -- the basic,
underlying dauge.
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The loops exist in multidimensional spacetime (ten
dimen%yions) and can oscillate in those dimensions.

Superimposed on the lowest dimension of each loop may be

a standing wave. The wave frequency is the gaude measure of
mass.
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Superimposed in a higher dimension is another wave.
The phase difference between vibrations on adjacent loops
in this dimension measures electromagnetic potential.
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Phase differences between oscillations in higher
dimensions measure weak potential and strong potential.

Interactions occur because adjacent locops can unite and
exchande modes of vibration before separating once again.
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Interactions are local, between neighboring lcops, and
local gaude is conserved.

Heterotic string theory (or rather this interpretation
thereof) thus provides a gymmetric (fermions and forces made
of the same loops), multidimensional (waves on loops of
strings embedded in multiple dimensions), grouped (fermions
defined by groups of vibration modes), gauge theorvy
(g€eometric phase model for particle interactions).

SUMMARY

Physicists hypothesize that all fermions and forces are
inter-related, and they seek a mathematical “theory of
everything"” describing the fermions and bosons. In this
chapter we have outlined some of the key components of
current theoretical endeavor.

The concept of symmetry provides a foundation for
theory. The conservation laws and local gauge invariance
follow from symmetry principles.

Multi-dimensional geometry provides a framework for
linking the quantum characteristics of particles and forces.
Qualities we call "spin, " "charge,” “"color,” etc., may be
gecmetric structures -- "fleas on fleas” -- compactified in
- the four-dimensional grid of spacetime.

Group theory describes the fermions as members of the
groups U(1l), SU(2), and SU(3). The theory represents each
fermion as a particular U(1) X SU0(2) X SU(3) phase.

Gauge theory explains force as a change in local
geometry, that is a force is equivalent, mathematically, to
change in daude phase.

Heterotic string is one of several supersymmetric

theories that incorporate these concepts and that may unify
our understanding of the known particles and forces.
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