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Chapter 15 

Quantum information and quantum computing:  the new kids on the block 

 

Information theory is the new kid on the block in the physics community.  Physicists these days 

study black holes using ideas first conjured by communications engineers studying information 

theory, trying to figure out how to send messages most efficiently across telephone lines.  

Complexity theory, born in computer science, now is contributing to work in quantum gravity.  

The goal of this article is to provide some background for understanding these developments.   

 

Two problems 

 

Physicists as of this writing (2023) are trying to solve two outstanding problems.  (There are 

others, but two especially stand out.)  First, what is the physical structure of space and time?  

Second, how can we reconcile general relativity and quantum mechanics, the two pillars of 

physics?  It turns out those two problems are closely related. 

 

Physical theory historically assumes that events occur on a pre-existing background of space and 

time.  With Newton’s laws we can calculate the orbits of planets around stars as if they were 

projected on a coordinate system of meter sticks and clocks.  Einstein’s relativity theory says that 

meter sticks stretch or shrink depending on the concentration of mass in their vicinity, and clocks 

slow down in a gravitational field.  But the theory still assumes that clocks and meter sticks or 

comparable measuring tools exist in the structure of the universe.  Only recently have physicists 

begun to tackle what the clocks and meter sticks are really made of, i.e. what is the underlying 

fabric of the “emptiness” out there between the galaxies.   

 

The second problem, reconciling inconsistencies between quantum mechanics and general 

relativity, is more subtle.  Quantum field theory (QFT is the most accurate physical theory we 

have.  It describes processes at the very smallest scales:  why quarks collect in protons and 

neutrons to form atomic nuclei, why electrons are attracted to nuclei to form atoms, why atoms 

absorb and emit light at particular wavelengths, etc.  The mathematical equations of QFT agree 

with experimental measurement out to one part in a thousand million million, the limits of our 

current capacity to calculate and measure such things.  General relativity (GR) is comparable in 

the accuracy of its predictions, precise confirmations limited only by the fact that GR deals with 

the very largest and most extreme structures in the universe – neutron stars, black holes, galaxies, 

and the universe itself – where measurements get messier just because of the enormous scale.  

Over one hundred years of observations, general relativity has passed all tests with flying colors:  

masses warp spacetime and bend the path of light;  spinning masses drag spacetime around with 

them;  black holes exist, as predicted;  gravitational waves exist, as predicted.  The problem is 

that there’s no mathematical theory (except maybe string theory under special conditions) that 

includes both QFT and GR in its framework.  We know there are circumstances where both 
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theories should apply.  For example, particles are produced at the event horizon of a black hole 

(the Hawking radiation).  QFT can describe the particle production.  GR can describe the black 

hole and its horizon.  But no single theory yet exists that encompasses both in a single 

mathematical framework.   

 

Enter quantum computation and information theory.  Recent collaboration between computer 

scientists and the physics community has generated a lot of excitement, chipping away at these 

problems.  That will be the purpose of the rest of this paper, to report new ideas relating the 

science of information to our traditional understanding of physics.  First some background in 

what the information stuff is all about. 

 

Information 

 

Information was given a precise definition by communications researchers including Claude 

Shannon at ATT Bell Labs and Charles Bennett at IBM Research.  At its essence, information is 

ones and zeros, yes vs. no,  heads vs. tails.  Information is the response to a yes-no question, and 

it is most easily contained in bits, either 1 or 0.  Is direct sunlight coming through your window 

right now?  Yes or no?  If yes, label that a 1.  That’s the relevant bit of information.  Is there an 

electron in register AF10H24B of your computer memory?  Yes or no?  If no, label that a zero.    

 

All information can be encoded in 1’s and 0’s.  It’s as if nature plays an ongoing game of twenty 

questions.  Is there a hydrogen atom at this particular location  x, y, z  at this particular time  t ?  

Yes or no.  Is it moving at  10 m/sec?  Is its spin up?  Of course, we simplify our description of 

nature by consolidating information into standard measurements:  what are the measured values 

of position, momentum and spin of the electron.  That saves a whole lot of yes-no entries into our 

data books.  But in principle, we could describe the world in ones and zeros for what’s 

happening at every location in space and time, including yes-no questions for all possible 

spacetime events. 

 

With this definition of information, it is convenient to encode messages as strings of ones and 

zeros – bit strings.  Computers encode the alphabet in strings of eight bits.  For example, to say 

“hi” send  01101000  01101001.  (01101000 is the bit string for “h,” and  01101001  is the bit 

string for “i.”)  If you want to be more enthusiastic, send “Hi!”,  01001000  01101001  

00100001.  (01001000 is the bit string for “H,” etc.)  Even better, this convention allows you to 

process the message using standard mathematical operators (from the realm of linear algebra).  

For example, if you wanted to convert all the lower case letters “h” in a text to uppercase “H” 

you could scan the text for “h” (itself a bitwise operation) then carry out a matrix operation on 

the bit string to flip the third bit in “h” from 1 to 0.  That particular matrix operation is kind of 

messy (involving an  8 × 8  matrix) so we’ll look at a simpler operation in a minute.  (If you are 

not familiar with linear algebra, suffice to say it’s a mathematical system that allows us to 
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convert one set of numbers (a vector) into another set of numbers using mathematical operators 

(matrices) governed by certain rules.  Linear algebra is a hi-falutin’ extension of standard 

arithmetic that allows us to model changes in complex systems, e.g. how does the path of an 

electron (a vector) change as it moves through an electric field (another vector).)  

 

This bit-wise idea of information caught the attention of physicists toward the end of the last 

century.  What is physics anyway?  We’re trying to understand nature, what the world is made of 

and how it works.  That is, we’re trying to extract information about nature.  And if information 

is, indeed, 1’s and 0’s, then we should be able to understand it as such.  One thing led to another 

(that’s the rest of the story in this paper) and pretty quickly physicists starting calculating in ones 

and zeros.  Suppose a photon, for example, flips the spin of an electron from spin down to spin 

up.  Here’s what that looks like in linear algebra bit notation. 

 

[
0 1
1 0

] [
1
0
] = [

0
1
] 

 

where  

𝑑𝑜𝑤𝑛 ≡ [
1
0
] ,   𝑢𝑝 ≡  [

0
1
] 

 

 

The matrix  [
0 1
1 0

]  represents a photon acting on the electron to flip the spin.  More generally, 

matrices like  [
0 1
1 0

]  transform – stretch or shrink or rotate – vectors, represented e.g. by the 

original vector  [
1
0
] and the flipped vector  [

0
1
] in the equation above.   

 

We model physical phenomena in mathematical equations.  Math is a convenient (read that 

“indispensable”) tool to represent nature.  It not only describes what’s going on, but its logical 

rules allow us to predict things we haven’t yet seen.  For some deep reason, nature herself 

follows those same rules.  (Or perhaps nature is mathematics, and we’re just discovering those 

maths.)  These particular mathematical operations come from standard linear algebra.  Sal 

Khan’s video, vector transformation, reviews the math behind matrix multiplication if you’d like 

further explanation.  Here’s the link to Khan’s Linear Algebra.  Anyway, we’ll explain the math 

as we go along.  

 

Once they caught the bit bug, (or the bug bit them) physicists found more and more nutrition in 

information theory.  One of the foundations of information theory that attracted their attention is 

the conservation law for information:  information is strictly conserved.  No information is ever 

lost.  It might become inaccessible (for example if your computer hard drive fails).  But it’s 

https://www.khanacademy.org/math/precalculus/precalc-matrices/matrices-as-transformations/v/transforming-position-vector
https://www.khanacademy.org/math/linear-algebra
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never lost.  Nature keeps strict accounting, and every last bit of information is recorded in 

nature’s books.  Forever.   

 

Here physicists encounter familiar territory.  Physics is built on the great conservation laws – 

conservation of energy, conservation of momentum, conservation of angular momentum, 

conservation of electric charge.  (There are others as well, and all derive from a deeper principle, 

locality.)  From the fresh perspective of information theory, we can re-interpret those classical 

conservation laws in terms of information, maybe even make some new headway.  Conservation 

of energy implies conservation of information about the state of a physical system, say a 

collection of atoms, over time.  Conservation of momentum implies conservation of information 

about the position of an object over time.   

 

We find conservation of information most impressively in the quantum unitarity .  Unitarity is a 

fancy term referring to probabilities.  Flip a fair coin and there’s 50% chance you’ll get heads, 

50% probability tails.  But it is certain, 100% probability, that you’ll get one or the other.  That’s 

unitarity.  Probabilities all have to add up to one, 100%.  Given that any particular outcome out 

of a number of possible outcomes can happen, it is certain that one of those outcomes will 

happen.  Roll a six-sided die and you know with certainty it will come up 1 or 2 or 3 or 4 or 5 or 

6.  Plant 100 tomato seeds and you know with certainty that none will sprout or 1 will sprout or 2 

or 3 or 4 or … or all 100.  From the information perspective, that is conservation of info.  Nature 

doesn’t just throw away probabilities.  It’s not possible not to have tails as a possible outcome 

when you flip a fair coin.  You don’t lose information about the state of the coin – it really does 

have a tails – when you toss the coin.  And nature doesn’t just add possible outcomes out of 

nowhere.  There’s no third possibility suddenly appears when you toss the coin.  We’ll see more 

of this when we get to quantum computation, shortly.  And, as we’ll see, the notion of unitarity 

gets kind of contentious when we start to talk about black holes.   

 

Classical circuits 

 

Information can be stored.  There are libraries filled with information and, of course, computer 

hard drives.  It can also be processed.  We can flip bits or extend bit strings or shrink them.  One 

of the great insights in computer science was the realization that in order to process information 

we use information itself as the processor.  We use one bit of information to tell us what to do 

with another bit – flip it or send it to memory or just pass it along a circuit wire.  As Alan Turing 

showed, information not only is the grist for computation but it also provides the instructions for 

the milling.   

 

Here’s a simple “full adder” circuit, for example.   See Figure 2 for an explanation of the logic 

gates in this circuit (the vertical lines with open and solid circles at their ends).   
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Figure 1.  Full adder circuit.  This circuit adds two-bit binary numbers.  The result is a bit string 
of up to three bits.  Wires 3 and 6 always start with an input bit of 0.  ab and cd carry the input 
bit pairs to be added.  To add one plus one, enter ab + cd = 01 + 01.  The result is 010 (one plus 
one equals two, in binary notation).  A couple other examples:   01 + 10 = 011 (one plus two 
equals three);   01 + 11 = 100 (one plus three equals four).  The bit string output (far right of the 
diagram) reads from bottom to top.  See example in the next Figure.  Khan Academy binary 
arithmetic has more examples.  Binary arithmetic is the basis of all computer operations and 
computer memory.  The two gates in this circuit are the CNOT gate and the Toffoli gate (named 
after Tommaso Toffoli).  Other gate combinations also could be used for the adder.  See the 
gate figure on the next page for explanation how these two gates work.   
 

 

Horizontal lines in the circuit diagram represent wires, which carry bits through time.  They may 

be actual wires in a computer or radio waves carrying AM or FM signals or any of many other 

physical transmitters.  Time runs left to right.  We can parse the ticks of the clock as uniform 

intervals along the horizontal axis or in terms of the bit transformations, one after another, 

carried out in sequence by the logic gates along the circuit.  Boxes represent single bit gates 

acting only on the bit in that particular wire.  An example is the NOT gate; it flips the value of 

the input.  If input is 0, output is 1;  if input is 1, output is 0.  Vertical connecting wires represent 

two- or three- bit gates.  The action of these gates on the target bit depends on the value of the 

bit(s) in the input wire(s).  For example, a CNOT gate (controlled NOT, vertical line from solid 

dot at upper wire to open dot on lower wire in the figure below) flips the target bit (wire through 

open dot) if the input (wire through solid dot) is a 1.  If the input is 0  CNOT leaves the target at 

its original value.  See Figure 2 and the truth values in the Appendix, Table 1. 

https://www.khanacademy.org/math/algebra-home/alg-intro-to-algebra/algebra-alternate-number-bases/v/number-systems-introduction
https://www.khanacademy.org/math/algebra-home/alg-intro-to-algebra/algebra-alternate-number-bases/v/number-systems-introduction
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Figure 2.  Some binary gates.  Shown are gates useful to our purposes.  Most classical circuits 
also include AND,  NAND,  and OR gates, not shown.  NOT is a single bit gate.  It flips the bit in 
its wire from 0 to 1 or 1 to 0.  CNOT and SWAP are two-bit gates.  SWAP exchanges bits 
between two wires; CNOT flips the target bit (open circle, B in this figure) if the input (A in the 
figure) equals 1, otherwise leaves the target bit unchanged if A is 0.   Fredkin swaps B and C if A 
is 1, does nothing if A is 0.  Toffoli flips C if both A and B are 1’s, otherwise does nothing.    
 

The full adder adds up to seven (111 in binary notation).  If you link a series of full adders, with 

the carry value as input  a  to the next adder in the series, you can calculate any sum.  And if you 

can add, then you can also subtract and multiply and divide.  The full adder enables all basic 

whole-number arithmetic.  That’s most of digital computation right there.   
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Figure 3.  Example of a calculation with the full adder.   2 + 3 = 5 → 010 + 011 = 101.   Two  
( 10 in binary notation ) plus three (binary 11 ) equals five.  Red values track bits along the wires 
as the various gates operate.  Output in standard pencil-and-paper notation reads from bottom 
to top on the far right of the circuit output,  101.  Carry 2 ( a 1 in this example) becomes input  a  
for the next adder in a larger circuit.  Try out other sums – it’s kind of fun to track bits through 
these circuits and watch the gates do their magic.   
 

 

It turns out you only need a handful of logic gates to build a circuit for any possible bit-wise 

computation.  XOR (exclusive OR) and AND provide a universal set; the right combinations of 

just those two will build your computer.  Just  NAND by itself (not-AND) is universal.  Apple 

could use circuits built from NAND to make the iPhone (but there are more efficient gate 

designs).  Vice versa, a circuit with NAND gates can be decomposed into a circuit with 

combinations of other gates.   See Table 1 in the Appendix for a more complete set of bit logic 

gates. 

 

In circuit diagrams physicists saw new models for physics.  Not only can you build circuits to 

run your calculations but maybe you can model the physics itself in the circuits.  Two electrons 

exchange a photon that flips their spins – maybe that’s a wire (electron moving in space and 

time) and a SWAP gate (photon exchanging spins).  Further progress along those lines requires 

that we dive into quantum computation.   
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Onward, then, to quantum circuits! 

 

Quantum information and quantum states 

 

So far we’ve been thinking classically.  Bits are discrete, either 0 or 1.  Quantum mechanics says 

a “bit” of information can be a 0 or a 1 or a little bit of both at the same time, a “qubit.”  

Moreover, qubits can become entangled with other qubits in vast networks.   Information can be 

distributed throughout a collection of entangled qubits.   

 

We need new symbols to contain these ideas.  Up to now we’ve used  1  and  0  to represent bits.  

For qubits we’ll use  |0⟩  and |1⟩ , the quantum symbols for state vectors.  Quantum mechanics 

models the world with state vectors in a vector space, and linear algebra is the language to 

describe it.  We’ll use electron spin as an example, but the ideas (state vectors and state space) 

apply to any property.  There’s a state space for every parameter, be it spin or position or 

momentum or color charge or any other characteristic (observable) of particles and fields.  The 

full state of the electron, including its spin, position, momentum, etc. sits in a larger (Hilbert) 

space comprising the particular observables as subspaces. 

 

Let’s spend a minute to clarify those concepts.  They’re not everyday vocabulary!  (See Susskind 

and Hrabovski, 2013, for a more thorough  discussion of fields and state space.)  A field is 

something that takes on a value at every point in space.  Temperature is a field, technically a 

scalar field.  You get a number (a.k.a. scalar value) when you measure the temperature at any 

particular location in a room.  The flow of water in a river is a vector field.  The current has both 

a speed and a direction,  3 m/sec due west in the middle of the river, 1 m/sec east in an eddy 

along the bank.  Electric and magnetic fields are good examples of vector fields in physics.  The 

needle on a compass (a vector) points north.   

 

As the name “quantum field theory” implies, physicists describe natural phenomena, especially 

particles and their interactions, in terms of fields.  In this way of thinking, an electron is an 

excitation in the underlying electron field.  Think of electrons like droplets of ocean spray 

excited by wind and currents out in the swells of the ocean “field.”  When we talk about particles 

in these terms, we’re talking about field quanta, i.e. packets of field.   

 

State space is like a catalog of all possible states of a system.  The state space of spin for a single 

electron includes |0⟩ and |1⟩.  When we measure its spin along the up-down direction, we find 

that the electron is either spin up or spin down.  That’s the result of the measurement.  But 

there’s much more.  The state space of electron spin also includes |𝑙𝑒𝑓𝑡⟩ and |𝑟𝑖𝑔ℎ𝑡⟩  and also  

|𝑓𝑜𝑟𝑤𝑎𝑟𝑑⟩  and  |𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑⟩  and all other directions in between.   
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Using this notation, we can represent the state space for a system of two electrons is |00⟩ (both 

up), |01⟩ (first electron up, second electron down), |10⟩ (first electron down, second up), and 

|11⟩ (both down).  That is, there are four possible outcomes when we measure the spin state of 

two independent electrons in the up-down direction.  The entire state space for two electrons, of 

course, includes combinations of the two electrons pointing independently every which way.   As 

you can see, things get real complicated, the state space expands rapidly, as you add more and 

more electrons to the system.   

 

For convenience, we can record the state space as a matrix (a list of possible states in matrix 

form).  For example, here’s the spin state space for a system of three independent electrons.  

Rows are the possible outcomes for measurement e.g. in the up-down direction, eight altogether.  

Notice that we’re interested in the state of the system composed of the three electrons.    

 

[
 
 
 
 
 
 
 

 

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

 

]
 
 
 
 
 
 
 

 

 

This representation provides a convenient method to help visualize what’s going on.  Since we 

can record states as vectors (collections of numbers) we can also draw those vectors using the 

standard mathematical representation of vectors as arrows.  Back to the spin state space for one 

electron, for illustration: 
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Figure 4.  Vector representation of spins up  |0⟩  and down   |1⟩  on the coordinates 
representing the vector space of spin up vs. down states.  Note a couple things.  First, the 
coordinate axes are not the  x, y  axes we’re used to in regular geometry.  The axes here 
represent the direction of the electron’s spin relative to some other outside Cartesian ( x, y, z ) 
axes.   For example, the vectors in the figure represent spin direction relative to the spatial 
(Cartesian) z-axis.  Second, note also that the vector labels are arbitrary.  By convention, we’ve 
chosen  |0⟩  as the spin up vector and  |1⟩  as spin down.  Finally, note that in this 
representation the vectors are orthogonal  (i.e. at right angles) and not pointing opposite 
directions as we would expect in the regular world of ups and downs.  Mathematical 
orthogonality means that a state is definitely one thing and not the other.  In this case, when 
we measure the electron along the z-axis the results show it is definitely up or definitely down.  
This orthogonality in the vector representation follows the mathematical rules of linear algebra 
assuring that when we measure the spin of an electron it is either up or down – even though 
the state of the electron, before any measurement, may be a mix of both!   
 

We mentioned that measurements only read out 1’s or 0’s for the state of electron spin.  

Unobserved, electrons’ spin axes point every which direction.  Here’s the full quantum 

expression for the state vector representing electron spin.   

 

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ 
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The brackets tell you we’re dealing with vectors.  |𝜓⟩ (Greek letter psi) is the conventional 

symbol for a state vector.  𝛼 (Greek letter alpha) is the amplitude (component) of the electron’s 

spin along the |0⟩ direction, i.e. how much the spin axis is tilted upward.   𝛽 is the amplitude of 

spin in the |1⟩ direction, i.e. how much the spin axis is tilted downward.  𝛼 and 𝛽, the 

amplitudes, are complex numbers in the formalism of quantum mechanics.  For our purposes, 

you can think of them just a numbers, e.g. 𝛼 = 0.8  and  𝛽 = 0.6, the proportions of up-ness and 

down-ness in the electron’s spin.   

 

One of the requirements of the quantum conventions is that  𝛼2 + 𝛽2 = 1.  We’ve seen this 

before.  It’s unitarity.  We are requiring that the spin of the electron is pointing in some direction 

and that the magnitude of the spin always equals one.  It’s an inherent, invariant property of the 

electron, part of what makes an electron an electron.   

 
 

Figure 5.  Vector representation of a general state vector,  |𝜓⟩, showing its component vectors  
𝛼|0⟩ and  𝛽|1⟩.  In this case,  |𝜓⟩ is built from a proportion  𝛼 of |0⟩ and proportion  𝛽 of |1⟩.  
Note that  |𝜓⟩, like |0⟩  and  |1⟩,  is one unit in length.  This is the requirement of unitarity, 
assuring that calculations always give probability = 1 when you add all possible vector 
components for a particular state. 
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There are some subtleties here.  Electrons aren’t really like little spinning tops, but the real 

physical property of spin can be conveniently described in those terms.  And there’s nothing 

magical about the Greek letters.  They’re just handy when you run out of the good ol’ Latin 

alphabet.  a’s and b’s and p’s and q’s have already been taken for other purposes.   

 

Quantum circuits 

 

Back now to circuitry.  Turns out we can understand a lot of quantum mechanics based on 

circuits, and with circuits we can calculate.   

 

Wires in a quantum circuit are qubits instead of ones and zeros.  We represent them in vector 

notation, e.g.  |𝜓⟩ .  The gates in a quantum circuit are vector operators, unitary matrices in the 

mathematical formalism.   We’ve already seen an example in our classical circuit.   

 

[
0 1
1 0

] [
1
0
] = [

0
1
] 

 

The matrix  [
0 1
1 0

]  flips the spin of an electron from down to up.  That’s a perfectly good 

quantum operation, by the way, assuming the electron is in a pure down state to start with, spin 

axis pointed straight along the down axis.  Unitary means what you suspect.  Unitary operators 

(matrices) preserve the probabilities, so that circuits (and the world) never produce more states 

than they started with.   

 

One of the joys (or headaches) of quantum circuits is that any unitary matrix qualifies as an 

operator and, therefore, a gate.  Some are far more useful than others, though, and just as in 

classical circuits you only need a few kinds of gates to build any conceivable quantum circuit.  

See Table 2 in the Appendix for a list of qubit logic gates.   

 

Among the most useful of the quantum operators is the Hadamard gate.  Hadamard takes a pure 

spin state, up or down, and transforms it into a mixed state.  For example 

 

|0⟩ →𝐻→
1

√2
(|0⟩ + |1⟩) 
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Figure 6.  Action of the Hadamard gate on qubits  |0⟩  and  |1⟩.  Note that Hadamard results in a 
mixed state; the original qubit is transformed into a mix of  |0⟩  and  |1⟩.  In terms of the 

general state  |𝜓⟩, Hadamard resets the values of  𝛼  to  
1

√2
   and  𝛽 →

1

√2
 or 

−1

√2
  .  Note that, as 

required by unitarity,  𝛼2 + 𝛽2 still = 1 after the transformation.   
 

Now we can start to do some magic or, rather, replicate some of the magic that Nature performs.  

Hadamard takes the first step in the maths of entanglement.  Whenever two particles bump into 

each other their state vectors become entangled.  As a result, even after the two particles are 

separated in space and time, you can get information about the state of one particle by measuring 

the state of the other.  Out in the real world particles are always bumping into each other.  (More 

properly, the fields that carry particle properties are always interacting.)  And ‘way back in the 

beginning at the Big Bang origin of the universe, all the fields were jam-packed squished and all 

interacting, so the whole shebang is entangled.  Since all that information is correlated through 

the entanglement, extracting information here can give us information about conditions out there 

across the universe and maybe even inside black holes.    

 

We have all the circuit tools we need to generate entangled pairs of qubits.  It’s easy to represent 

entanglement with state vectors.  For example, here’s an entangled spin state for a pair of 

electrons.   
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|𝜓⟩ =
1

√2
(|00⟩ + |11⟩) 

 

We don’t know the spin of either electron until we measure one of them.  All we know is the 

overall state  |𝜓⟩  represented in the formula above;  we entangled the electrons in that particular 

state.  There’s a 50% chance both electrons are spin up, 50% chance they’re both spin down.  

But if we measure the first electron (labeled green) and find it’s spin is up, then we also know, 

with 100% certainty, that the second electron (labeled by magenta) has spin up.  And if we 

measure the first electron and find its spin is down, then we also find the second electron has 

spin down.  That’s entanglement.  We can determine the state of one electron by measuring the 

other, even if they are separated from each other across the room or across the universe.   

 

To build such an entangled state, all you need is two qubits for input then a Hadamard gate 

followed by a CNOT.  Presto!  You’ve got an entangled pair, a so-called Bell pair (named after 

John Bell, who studied the marvelous properties of such creatures and, with them, proved that 

quantum mechanics is not compatible with standard classical logic).  

 
Figure 7.  Circuit to prepare an entangled pair of qubits.  Input qubits in this example are both  
|0⟩.  A Hadamard gate produces a mixed state in the top qubit, and a CNOT transforms the 
lower qubit based on that mixed state.  Note that CNOT acts on the bottom  |0⟩ twice, first with 

the  
|0⟩

√2
  control and then with  

|1⟩

√2
  to produce the mixed state in the bottom wire.  The output 
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superposition of both wires is an entangled state referred to as  𝐵00 , the Bell state produced 
when both inputs are  |0⟩.  See if you can figure out the other Bell states,  𝐵01,  𝐵10, and 𝐵11.   
 

Quantum mechanics won’t allow us to measure all the details of a full state,  |𝜓⟩.  When we 

measure a particle’s spin, for example, we choose the orientation of our measuring device, say 

along the  z-axis.  Particles entering that device may have spin oriented any which way, but all 

we can detect is their component of spin along  z.  For any one particle, all that the detector can 

tell us is “spin up” or “spin down.”  If we measure lots of particles that were all prepared in the 

same state, then we can count how many spin up’s we measure and how many spin down.  (“All 

prepared in the same state” is key here.)  Those counts give us  𝛼2 and 𝛽2  for the state 𝜓  in 

which the particles were prepared.   

 

With entanglement we can do wonders.  Entanglement enables circuits to send two classical bits 

of information using just a single qubit.  This “superdense coding” allows a sender, Alice, to 

send twice as much information to a receiver, Bob, at the same cost of computation.   

Even more, entanglement allows teleportation.  It’s not yet (and probably never will be, because 

of practical limitations) the “beam me up, Scotty” teleportation of Star Trek.  But it has already 

been accomplished in a variety of physical systems using quantum circuitry.  Alice can teleport a 

Bell state to Bob.     
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Figure 8.  Teleportation circuit.  Alice, A, processes two qubits to teleport the state  |𝜓⟩ to Bob, 
B.  One of Alice’s inputs is the tensor product of  |𝜓⟩ with the Bell state,  𝐵00.  We’ll skip the 
details of tensor products; think of this product as in standard encryption  –  the product 
resulting from multiplying the coded message times a prime number, the key.  Later, if Bob 
knows that prime key, he can divide the product to extract the message.  This teleportation 
circuit is a bit more complicated, but that’s the essence.  Alice entangles the tensor product 
with a second Bell qubit.  Then she measures the qubits in both wires.  As we’ve seen, 
measurement reads out a classical bit; that’s what the double lines represent – bits rather than 
qubits.  Alice sends those measurements to Bob over a standard circuit (hence there can be no 
faster-than-light teleportation).  The bit pair,  00, 01, 10, or 11 that Alice sends is the key that 
Bob uses to extract |𝜓⟩ from his own Bell state.  The replicator is one of the rotation gates, R.  
Bob rotates  𝐵00 around the X axis if he receives 01, around Z if he receives 10, and around X 
then Z if he receives 11.  If Alice sends 00, then  𝐵00 itself is  |𝜓⟩.  
 

We won’t go into the details how these circuits work, but if you’d like to look behind the 

curtains in this magic show, check out Nielsen and Chuang, 2008, or see Nielsen’s YouTube 

lectures on the subject (Nielsen, YouTube 2014). 

 

A final comment on these circuits and how they help to illustrate the mechanisms of quantum 

mechanics:  We’ve used vectors in two-dimensional space as examples.  As we’ve already 

mentioned, though, nature is a jumble of fields – electron fields and photon fields and the weak 

and strong fields and the Higgs field and more.  To fully describe the state of any particle, we 

have to include all the appropriate fields.  But then, maybe that’s not so bad.  We might not have 

to imagine vectors in six dimensions to represent six fields.  Maybe the circuits, with appropriate 

https://www.youtube.com/playlist?list=PL1826E60FD05B44E4
https://www.youtube.com/playlist?list=PL1826E60FD05B44E4
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gates, can simplify things.  Maybe circuits can help us understand complicated field interactions 

in terms of information processing.  Feynman diagrams, the standard representation of field 

interactions, sure look like quantum circuits, and their components behave like wires and gates.   

 

Complexity 

 

As you can see from the figures, circuit design can quickly become more complicated.  Add 

more wires, more gates, pretty soon you have an indecipherable spider web.  There’s an entire 

discipline devoted to the study of circuit complexity and, more generally, computational 

complexity.   As we’ll see, complexity theory is providing insights not only into computer design 

but also into the insides of black holes.   

 

A basic question for computer programmers (and engineers and mathematicians generally):  is 

this problem solvable?  If so, how much do I have to invest in time and computational resources 

in order to solve the problem?  Information theorists have gained profound insights not only into 

computation but into the very foundations of mathematical logic trying to answer such questions.  

Most famous is Godel’s incompleteness theorem.  There exist mathematical truths that cannot be 

proven using the formal structure of mathematics.  In the computer world a comparable puzzle is 

the halting problem.  Can you prove whether or not a given algorithm, running on any universal 

computer, will ever reach a solution and stop?   

 

Is a problem solvable using the computational tools at hand?  Complexity theorists categorize 

problems according to the time and computer resources (i.e. memory, processor speed, etc.) 

required for a solution.  Polynomial-time problems are those that can be solved within a time 

related by a polynomial function of the size of the input.  For example, calculating the cost of the 

groceries in your shopping cart is a polynomial problem (linear in this case).  Just multiply how 

many of each item by the cost per item, and add them all up.  Done.  On the other hand if your 

task is to figure out from first principles the energy released in nuclear fission and the resulting 

shock wave, the calculations rapidly blow up.  A single neutron splits a uranium nucleus which 

releases two more neutrons which split two more nuclei resulting in four neutrons then 8 and 16 

and  . . .   Try to track the energy release and resulting shock wave in a bomb simulation and 

you’re dealing with exponential increase in calculations.  Your computer may bog down.   

 

In broad terms, we want to know which problems are solvable and which are not.  Typically 

polynomial time problems are solvable and exponential problems are very difficult or impossible 

given present computer resources.  See Scott Aaronson’s book  Quantum Computing Since 

Democritus for a more thorough discussion.   What we’re most interested in here is, given the 

nature of the problem, what is the most efficient design for the circuitry to solve the problem?  

What is the optimal configuration of wires and gates? 
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A wonderful surprise emerged from research into this question.  It is not unheard of in the 

sciences to find Einstein’s field equations hiding in unusual nooks and crannies.  The equations 

for gravity-as-geometry pop up in string theory and thermodynamics and all kinds of unexpected 

places.  But no one expected them in quantum circuits.   

 

Michael Nielsen, an information theorist then at the University of Queensland, and his 

collaborators found that quantum circuits could be optimized using the rules of Riemann 

geometry, the rules of general relativity.  Optimal circuits are, effectively, solutions to the 

geodesic equation – the shortest path between two events in spacetime – translated into the 

architecture of a quantum circuit.  (Nielsen et al, 2006)   For general purposes, the optimal 

quantum circuit is the one with the fewest gates required to output a target state given a 

particular input state.  Given  |00101101⟩  what is the minimal gate set to produce  |11001011⟩ 

?  Nielsen et al showed it is a geodesic through the circuit.   

 

Just think of it!  It’s like gravity in the machine.  General relativity in the circuits.  Perhaps you 

can mimic gravity in the quantum circuits.  Turns out there are other lines of evidence that 

indicate you sure can.   

 

The Quantum Church-Turing Thesis 

 

Alan Turing arguably saved England in the Second World War with the computer that cracked 

the German Enigma code.  Before that, he laid the mathematical foundations for universal 

computational devices, what we regard now as the modern computer.  Before his discoveries 

computers were hard-wired to solve a specific problem, i.e. what is the trajectory of such-and-

such an artillery shell fired at such-and-such an angle.  Try to solve a different problem and you 

have to re-wire the machine.  Turing showed how to design a general device that could solve any 

problem.  All the flexibility comes in the software code, the set of instructions given to the 

device.  Need to solve a different problem?  Just change the code.   

 

Along the way thinking about such things, Turing along with Alonso Church showed that the 

processes in any one universal computer could be replicated in any other universal computer.  

Write a program for your Mac and you could reproduce the same computations (with appropriate 

code) on your PC.  Turing and Church were considering classical, digital computers.  Dreams of 

quantum computers were for the future, but further mathematical logic seems to imply that any 

universal quantum computer should be able to reproduce the processes of any other.   

 

We’re still a long ways from universal quantum computers.  In fact, a universal quantum device 

might be beyond reach.  We may be stuck with dedicated quantum computers, like the early 

digital devices, designed to crack specific problems.  Even so, the implications are marvelous.   
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Consider:  nature itself is a quantum processor.  Nature takes quantum information, processes it, 

outputs some result.  Leaves capture quanta of light, photons.  Photosynthesis transforms those 

quanta into new chemical bonds.  Output is glucose.  It’s a computation.  A really complicated 

one in its details, but a computation nonetheless.  If Church and Turing are correct, if any 

quantum computation can be simulated on any other quantum device, then we should be able to 

model photosynthesis in a quantum computer.  That’s the quantum Church-Turing hypothesis.  

You can model any quantum system, including natural systems, on any other properly designed 

quantum computer.  Nature in the machine.   

 

Nature’s own quantum computers are all around us.  The idea that we humans could build 

quantum computers originated as reverse engineering.  Richard Feynman, the great American 

physicist and educator, started it all.  Standard digital computers were tackling problems at the 

forefront of physics, e.g. analyzing scattering amplitudes in the great particle accelerators.  

Feynman realized, however, that a digital machine would quickly be overwhelmed by 

calculations in quantum mechanics, trying to keep track of continuous variables of the state 

vector.  Feynman’s solution:  simulate quantum systems on a quantum computer.  Use quantum 

mechanics to solve quantum problems.  (Feynman, 1981;  and see Preskill, 2021.) 

 

 

Into the lab 

 

What’s the payoff?  Information theory, digital circuits and quantum circuits, complexity,  

Church-Turing.  They’re giving us some swell ideas, but how do we know we are really onto 

something?  Science demands evidence.   

 

Well, we’re starting to see that evidence.  Among other marvels, these notions from quantum 

information theory provide blueprints to experiment with black holes in the lab.  Black holes in a 

laboratory.  On quantum computers at your neighborhood university.  Imagine that.   

 

Here are a couple examples.  Many more are in the works.   

 

In 2019 Christopher Monroe and his colleagues at the University of Maryland built an entangled 

system of ytterbium ions that mimics the physics of information scrambling inside a black hole.  

(Landsman et al, 2019.)  Any new qubit of information, theory predicts, diffuses rapidly 

throughout an entangled quantum system.  You have to probe the whole system afterward in 

order to recover that information.  Under the event horizon of a black hole, any added 

information should “scramble” as fast a nature allows.  Turns out that’s really fast, about five 

millionths of a second for a solar mass black hole.  It’s like a drop of ink dispersing in a glass of 

water instantaneously.   
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Monroe and colleagues trapped a linear array of seven ytterbium ions in an electric field.  (The 

biggest quantum computers even as of 2023 still comprise only a few dozen qubits.)  They 

controlled the spin states of the ions with lasers, with which they were able to entangle all the 

spins.  Then they tweaked (e.g. flipped the spin of) the ion at one end of the array and measured 

the time it took for the tweak to reach the other end.  Scrambling by the entanglement in such an 

array effectively reduces the viscosity of information transfer and reduces the arrival time.  In 

their system, information transfer through the entangled spins was essentially instantaneous, as 

predicted.   

 

 
 

Figure 9.  Array of 50 ytterbium ions held by electric field and fluorescing in laser light.  For the 
scrambling experiment the research team used just seven ions, the maximum that could be 
entangled in the system.  Image courtesy of the Monroe Lab, University of Maryland.   
 

 

That’s part of the black-holes-on-a-quantum-computer story.  These days things are getting 

curiouser and curiouser.  Now it’s wormholes.   

 

The stuff of science fiction.  But in fact, wormholes were described ‘way back in 1935, one of 

the predictions that popped out from the (relatively) new theory of general relativity.  Albert 

Einstein and Nathan Rosen discovered wormholes in mathematical solutions to the Einstein field 

equations.  There they were, wriggling out of the maths of general relativity.  (Einstein and 

Rosen, 1935.) 

 

Crazy stuff.   The maths show that a black hole here can be connected, through a wormhole, to 

another black hole clear across the universe.  And you can traverse the wormhole from here to 

there in a jiffy, through the wormhole doorway.  Cross the universe without having to bother 

with silly restrictions of you-can’t-go-faster-than-light.  Through the wormhole and presto, 

you’re there!   

 

Problem is the classical “Einstein bridge” wormhole collapses soon as it’s created.  Before you 

can step in, it’s gone.   

 

Quantum maths, on the other hand, allows wormholes.  Given the right conditions (a negative 

energy state), quantum mechanics can prop open a wormhole.  It won’t be wide enough for you 

to traverse, but you can send quantum stuff from one end to the other.  Quantum stuff like qubits.   
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About the time of the Monroe lab’s scrambling, research groups at Harvard and Caltech got to 

wondering if they could create a wormhole on a quantum computer.  They had the design specs.  

The Google quantum computer lab at Santa Barbara had the machine.  It was crazy enough they 

gave it a try.  (Quanta Magazine, 2022;  Wolchover, 2022.) 

 

Instead of trapped ions, Google’s Sycamore quantum computer uses superconducting circuits as 

qubits.  A current can flow clockwise around the microscopic circuit element or anti-clockwise 

or in a superposition   
1

√2
(|↻⟩ + |↺⟩) .  Ones and zeros and superpositions.  Qubits.  The team 

created a wormhole comprising entangled qubits, stabilized it with magnetic fields, and 

teleported a message qubit from one side to the other.  Like dropping Alice through the event 

horizon of one black hole and teleporting her through a wormhole and out the event horizon of 

Bob’s black hole far far away.  (Jafferis, 2022.) 

 

Well, not quite so dramatic.  The experimenters will be the first to point out there’s not a real 

physical wormhole in the lab.  But the maths are the same.  The mathematical model on which 

the Sycamore wormhole is built is the same model as a perfectly acceptable black hole / 

wormhole state.  By Church-Turing, they’re the same.  Tinker with one, poke and probe and try 

to figure it out, and it’s just as if you’re studying the other.   
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Figure 10.  Wormhole in the lab.  Maria Spiropulu’s group at Caltech prepared a wormhole 
simulation on Google’s Sycamore quantum computer in 2022.  Shown are the first two steps in 
the preparation.  The state of in input qubit is entangled with seven qubits (superconducting 
circuits in Sycamore).  Then in Step 3 a magnetic pulse transfers the entangled state to the 
particles on the right.  The state localizes to a single particle and is extracted as readout.  Steps 
3 and 4 (not shown) essentially reverse the process in steps 1 and 2.  Image credit:  Merrill 
Sherman, Quanta Magazine.    
 

 

Outlook 

 

These are just a couple examples of progress in a burgeoning field.  Condensed matter physicists 

use these ideas to develop and explore new materials.  The mathematical (SYK) model which 

provided the theoretical basis for the Sycamore wormhole was formulated to understand the 

behavior of electrons in a “strange metal” discovered by Subir Sachdev and Jinwu Ye.  The 

model connects black holes and condensed matter and quantum computers and who knows what 

else.  Cryptographers build entangled systems to ensure unbreakable network security.  Chemists 

model reaction mechanisms to improve yield.  And much more.  For some examples of physics 

at the frontiers of quantum computation see the Monroe Lab web site (Monroe Lab) and 

presentations by Monika Schleier-Smith (Schleier-Smith, 2021).  There are many other active 

research groups around the world.  It’s heady times, with lots of excitement and rapid progress.   

 

This is a marvelous realm to explore.  Ideas from information theory, quantum computation, 

general relativity, condensed matter physics, thermodynamics, and other disciplines are finding 



23 

 

common ground, pushing progress toward understanding the fabric of the universe.  More on that 

next.   
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Appendix 

 
Table 1.  Some of the common gates in binary circuits.  A few are universal gates:  NAND, 
Toffoli, and Fredkin among them.  Complete circuits can be built using just those gates by 
themselves.  Usually, though, and because of limitations in the physical hardware of the 
computer, various combinations of gates are more efficient.  The truth table shows the output 
for any given binary input.   
 

Gate Truth table 

NOT 

flips the bit in its wire 

Input Output 

0 1 

1 0 

 

 

AND 

output 1 if both A and B = 1, output 

zero otherwise 

Input  AB Output  C 

00 0 

01 0 

10 0 

11 1 

 

 

NAND (not AND) 

output  0  if both A and B = 1, output 

 1 otherwise 

Input  AB Output  C 

00 1 

01 1 

10 1 

11 0 

 

 

XOR (exclusive OR) 

output  1  if either A or B = 1, output 

zero otherwise 

Input  AB Output  C 

00 0 

01 1 

10 1 

11 0 
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SWAP 

exchanges bits between two wires 

Input  AB Output  AB 

00 00 

01 10 

10 01 

11 11 

 

 

CNOT 

flips target bit, in second wire, if bit in 

the input wire is 1 

Input  AB Output  AB 

00 00 

01 01 

10 11 

11 10 

 

 

Toffoli gate 

flips bit in target wire C if both input 

wires, A and B, are 1’s 

Input  ABC Output  ABC 

000 000 

001 001 

010 010 

011 011 

100 100 

101 101 

110 111 

111 110 

 

 

Fredkin gate 

swaps bits in target wires, B and C, if 

A is 1 

 

Input  ABC Output  ABC 

000 000 

001 001 

010 010 

011 011 

100 100 

101 110 

110 101 

111 111 
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Table 2.  Standard universal set of quantum gates.  Note that these gates are equivalent to 
vector operators – matrices – that rotate state vectors in three-dimensional vector space.  For 
example, the action of the X gate is to rotate a vector around the X axis.  We can choose X to 
represent direction of a physical parameter such as spin or “direction” in some other state 
space, such as color charge.  For example, an X gate, in matrix form, operating on spin down is 
represented as  
 

[ 
0 1
1 0

 ] [
1
0
] = [

0
1
] 

 

where [
1
0
] is the vector representation of spin down and  [

0
1
]  is the vector spin up.  With this 

set of gates, we can rotate state vectors to any orientation in space, i.e. we can represent any 
of the infinitude of states on  2-D or 3-D coordinate systems.  See Figure 6.   
 

Gate Truth table or matrix form 

CNOT 

flips target qubit in the second wire if qubit 

in the input wire is 1 

Input  AB Output  AB 

|00⟩ |00⟩ 

|01⟩ |01⟩ 

|10⟩ |11⟩ 

|11⟩ |10⟩ 

 

 

Hadamard 

creates mixed states  

Input   Output  

|0⟩ 1

√2
(|0⟩ + |1⟩) 

|1⟩ 1

√2
(|0⟩ − |1⟩) 

 

 

X 

rotates state vector around the  x-axis 

 

[ 
0 1
1 0

 ] 

 

Y 

rotates state vector around the  y-axis  

 

[ 
0 −𝑖
𝑖 0

 ] 
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Z 

rotates state vector around the  z-axis 

 

 

 

[ 
1 0
0 −1 

] 

 

Phase shift  

[ 
1 0
0 𝑖 

 ] 

 
𝜋

8
 Phase  

[ 
1 0

0 𝑒𝑖
𝜋
4  

] 

 

 

 

 

 

 

 

 

 


