
We have derived a scattering amplitude for string interactions, so we can describe what happens 

when strings bump into each other.  Now we enter the realm of topology.  The scattering 

amplitude is of a form that requires the world sheets of strings to live on a particular space, Ricci 

flat space.  That is, the mathematical form of the scattering amplitude determines the manifold 

on which the strings exist, their background spacetime.  And, wonder of wonders, that manifold 

is the spacetime of General Relativity!     

 

Conformal invariance 

 

We derived the Susskind (Polyakov) scattering amplitude in Chapter 14 from sum-over-paths 

arguments.  Now we will re-interpret that amplitude as topology.  We seek functions that 

reproduce the topology of string interactions in simpler form.   

 

Here’s the plan.  We will show that the argument in the exponent of the Susskind amplitude is 

conformally invariant.  That is, the amplitude describes string interactions on topologies that can 

be stretched and distorted, so long as local angles are preserved.  That allows us to map the string 

world sheets onto topologies where the amplitudes are easier to calculate.  

 

It’s kind of a winding road.  In outline, here’s what lies ahead. 

 

1. We’ll motivate the argument in pictures.  Imagining the string world sheet is a stretchy 

membrane, we’ll tug and pull and mold it into a simpler figure.   

2. Then we’ll derive the conditions (conformal invariance) by which the relations between 

local coordinates are preserved when we distort the world sheet. 

3. Then we’ll demonstrate that those conditions are met in the argument of the Susskind 

amplitude.  So string theory is conformally invariant, and we can study string 

interactions on simpler topologies.    

 

Just to review our argument from the previous chapters:  we started with the Feynman diagrams 

of the T- and S-channels. 
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Figure 16.1. 



 

 

We argued that T- and S- channels can be represented as the world sheet of interacting strings. 

 

 
Figure 16.2.  Interaction between two open strings.  k’s represent momenta.   

 
The same interaction in string  (   ) coordinates shows the ends of two interacting strings 

connecting (new “spring” between them) then separating. 

 

 
 

Figure 16.3.  Same interaction between two open strings as in Figure 16.2 but drawn in  
string parameters,           

 



This representation of interacting strings is equivalent in topology to a distorted “bull’s eye” 

(figure below left).  We show that we can map this bull’s eye world sheet to a disk.  The function 

represented by the disk will provide a straightforward integral to calculate the scattering 

amplitude.  (That’s next chapter.) 

 

 
 

Figure 16.4.  Equivalent representations of the topology of the world sheet showing the 
interaction of two open strings.   World sheet representation on the left can be distorted 

smoothly to produce the disk on the right. 
 

Next we determine the conditions which preserve relations between coordinates while mapping 

the world sheet from one topology to another, as in Figure 16.4.  Let  w  be a complex function 

of  z .   The figure below maps one point in  z  to the corresponding point in  w.  Also shown are 

the corresponding differentials.    

 

 
Figure 16.5. 

 

We work in the complex plane, where          and         .  To preserve the topology, 

we require that  

 



  

  
 
      

      
 

 

(16.1) 

and this relation does not depend on direction.  The equation holds true, for example, whether we 

take a derivative of  z  along  x, holding  y  constant or vice versa along  y  holding  x  constant.   

 

Along   x   
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and along  y 

 
  

  
 
      

   
 
  

   
 
   

   
 

 

(16.3) 

Applying the condition of directional independence, we separate the real and imaginary 

components of these two equations. 
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and 
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These are the Cauchy-Riemann equations, named after the mathematicians who found that the 

equations hold for all analytic functions.  If we take the second derivatives of these equations 

with respect to  x  and then with respect to  y , after a bit of algebra we recover the Laplace 

equation. 

 

   

   
 
   

   
   

 

(16.6) 

Following the logic in reverse, we have shown that functions that satisfy the Laplace equation 

are conformally invariant.  That is, their derivatives – and therefore topological relations – are 

unchanged by the mapping.   

 

There’s more.  We show next that angles, also, are preserved by the mapping.   

 



 
Figure 16.6.  Mapping from  z  to  w  showing displacement vectors             (         )  

separated by angles      (  ) . 
 

 

We can re-write      and      in polar form. 
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and 

 

         
 

(16.8) 

so that   
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Similarly 

 
  

  
   (     ) 

 

(16.10) 

We have already shown that 
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by conformal invariance.  By similar argument 
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So 
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Therefore, 
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The transformation preserves angles.    

 

We have learned that these (conformally invariant) functions obey the Laplace equation and that 

they preserve angles.  Turned around, functions built on the Laplace equations must be 

conformally invariant.   

 

Now recollect the form of the scattering amplitude.  The string scattering amplitude is built on 

the Laplace equation.  It’s in the exponential of (14.2), rewritten here. 
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That’s Laplace, in green. 

  

The string amplitude includes Laplace’s equation in its argument.  Laplace’s equation is 

conformally invariant, so we have established that the string amplitude is conformally invariant.  

Hence, we can map the interaction world sheet to a topology that will make it easier to calculate 

interaction amplitudes.  That’s what we’ll do next. 
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